Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0362320070320040377
Journal of Korean Academy of Operative Dentistry
2007 Volume.32 No. 4 p.377 ~ p.384
MICROLEAKAGE OF COMPOSITE RESIN RESTORATION ACCORDING TO THE NUMBER OF THERMOCYCLING
Kim Chang-Youn

Shin Dong-Hoon
Abstract
Present tooth bonding system can be categorized into total etching bonding system (TE) and self-etching boding system (SE) based on their way of smear layer treatment. The purposes of this study were to compare the effectiveness between these two systems and to evaluate the effect of number of themocycling on microleakage of class V composite resin restorations. Total forty class V cavities were prepared on the single-rooted bovine teeth and were randomly divided into four experimental groups: two kinds of bonding system and another two kinds of thermocycling groups. Half of the cavities were filed with Z250 following the use of TE system, Single Bond and another twenty cavities were filled with Metafil and AQ Bond, SE system. All composite restoratives were cured using light curing unit (XL2500, 3M ESPE, St. Paul, MN, USA) for 40 seconds with a light intensity of $600mW/cm^2$. Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Half of teeth were thermocycled 500 times and the other half were thermocycled 5,000 times between $5^{\circ}C$ and $55^{\circ}C$ for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}A$) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. From this study, following results were obtained: There was no interaction between variables of bonding system and number of thermocycling (p = 0.485). Microleakage was not affected by the number of thermocycling either (p = 0.814). However, Composite restoration of Metafil and AQ Bond, SE bond system showed less microleakage than composite restoration of Z250 and Single Bond, TE bond system (p = 0.005).
KEYWORD
Total etching bonding system, Self-etching bonding system, Thermocycling, Microleakage, Electrochemical method
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)